
Determination of a heat source in porous medium
with convective mass diffusion by an inverse method

M. Prud�homme *, S. Jasmin

Department of Mechanical Engineering, �EEcole Polytechnique de Montr�eeal, C.P. 6079, Succ. Centre-ville,

Montr�eeal, Que., Canada H3C 3A7

Received 31 May 2002; received in revised form 11 October 2002

Abstract

A formulation is given of the inverse natural convection problem by conjugate gradient with adjoint equations in a

porous medium with mass diffusion for the determination, from temperature measurements by sensors located within

the medium, of an unknown volumetric heat source which is a function of the solute concentration. The direct, sen-

sitivity and adjoint set of equations are derived for a Boussinesq fluid, over an arbitrary domain in two dimensions.

Solutions by control volumes are presented for a square enclosure subjected to known temperature and concentration

boundary conditions, assuming a source term depending on average vertical solute concentration. Reasonably accurate

solutions are obtained at least up to Ra ¼ 105 with the source models considered, for Lewis numbers ranging from 0.1

to 10. Noisy data solutions are regularized by stopping the iterations according to the discrepancy principle of Alifanov,

before the high frequency components of the random noises are reproduced.

� 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

It is generally acknowledged that the composting

process of organic wastes helps to preserve environ-

mental resources. Valuable constituents are also present

in composting byproducts which can be successfully

recovered for agricultural purposes. The experiments of

Larsen and McCartney [1] with pulp and paper waste

recently confirmed that composting is essentially a non-

isothermal bioprocess, controlled by internal heat gen-

eration from microbial oxidation. They also reported

strong relationships between microbial activity and

chemical solute concentration ratios. Gostomski et al.

[2] as well as Weppen [3] reached similar conclusions

after their investigations and recognized the importance

of humidity boundary conditions and how heat gener-

ation affects the microbiology.

In this context, it is relevant to seek efficient ways to

determine either concentration and/or heat generation

distribution within composting systems. From a mod-

eling point of view, composting may be tough of as a

double-diffusive convection problem in a porous me-

dium with a heat source. Few studies were ever under-

taken on this topic. Among these, Chamkha [4] recently

treated the double-diffusive problem for a gas mixture

contained in a rectangular enclosure with heat and mass

gradients applied on the vertical walls and a heat source

depending linearly upon temperature.

The inverse problem approach, which is purposely

designed to estimate boundary conditions or thermo-

physical properties of a system where direct measure-

ments are impracticable, offers an interesting way at this

point to determine the heat source distributions within

composting reactors. In most inverse heat transfer

problems, one typically seeks to evaluate the tempera-

ture or heat flux on part of the boundary surface of a

body, through the use of remote temperature measure-

ments taken either within the body itself or on a differ-

ent part of the bounding surface. Inverse problems are

also characterized by the fact that small random errors
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in the internal measurements at the input can lead to

substantial errors in the unknown boundary values at

the output. Inverse problems are in mathematical terms

classified as ill-posed problems, for which simple solu-

tion procedures such as the exact matching of the

computational temperatures with the measurement val-

ues or a least squares minimization [5,6] of the error

between calculations and measurements are prone to

instability with inaccurate data.

A lot of efforts were consequently devoted over the

last decades to the regularization of inverse solutions,

that is, on how to reduce error growth. The function

specification method of Beck and coworkers [7,8] where

the time domain is subdivided and a least-squares prob-

lem solved over each subdomain in sequence, using as-

sumptions about future data for stabilization, has

emerged as what is probably the best known sequential

procedure for inverse heat conduction problems.

Among the so-called whole domain methods, in

which the unknown boundary condition or source term

is determined at once for all times and/or positions, a

solution procedure was developed by Tikhonov and

Arsenin [9], which modifies the basic least squares

method by adding a smoothing constraint term, multi-

plied by an appropriate regularization parameter. An

alternative approach would be to rely on the iterative

regularization method described by Alifanov [10]. Both

methods are based on sound mathematical principles

and are applicable to a large variety of inverse problems.

A lot of information is available in the literature re-

garding the inverse conduction problems encountered in

the design, control and identification of thermal systems.

Much less however can be found on inverse problems

involving convection flow. This is especially true of

problems in natural convection, for which the temper-

ature and flow field equations are always non-linearly

coupled. As a result, the problem is more difficult to

solve than in forced convection. Let us mention that

Moutsoglou [11] used the sequential function specifica-

tion method to study laminar inverse natural convection

in a vertical channel, for which the steady heat flux at

one wall was the unknown, while the temperature on the

opposite insulated wall was taken as known. More re-

cently, Park and Chung [12] and later Park and Jung

[13], solved the inverse natural convection problem for

an unknown time-dependent heat source inside a square

cavity, using the Chebyshev pseudospectral method and

the Karhunen–Lo�eeve Galerkin method respectively, to

solve the set of direct, adjoint and sensitivity equations.

Zabaras and Yang [14] and Yang and Zabaras [15] used

the conjugate gradient (CG) method to solve in-

verse natural convection problems by finite elements.

Prud�homme and Nguyen [16] also choosed the CG

method to solve the inverse natural convection problem,

Nomenclature

A area

dX boundary

E error

f arbitrary function

g gravity

H height

J Jacobian

L length

Le Lewis number

n normal direction

p conjugate search direction

Q volumetric heat Source

r position vector

Ra Rayleigh number

S solute concentration

t time

T temperature

u velocity vector

x, y coordinates

Greek symbols

a step size or thermal diffusivity

b coefficient of thermal expansion

d Dirac delta function

D increment

e small number or normalized porosity

r standard deviation

w stream function

X domain surface

Superscripts

k iteration number

~ sensitivity variable

– Adjoint variable
^ unit vector

Subscripts

av average value

m measurement value

0 reference value

f final value

S solute

T thermal

Other symbols

h�j�i inner product

k � k norm

r gradient

rn	 normal component of curls
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in a square cavity with an unknown heat flux on one

vertical wall, using adjoint equations.

In the present study, the CG method with adjoint

equations will be adapted to solve the inverse natural

convection problem in a porous medium with mass

diffusion, for a volumetric heat source which is a func-

tion of the solute concentration, as could be found in

a composting reactor for instance. The versatility of

the method will be investigated by considering steady

and unsteady problems, a linear and a non-linear source

distribution model, in conduction and in convection.

The sensitivity and adjoint equations required by the

CG method are derived in the following section over a

simply connected domain in two dimensions, submitted

to general linear boundary conditions. Numerical com-

putations are carried out next for typical test cases in a

simple rectangular geometry. Results are analyzed in

terms of the Rayleigh and Lewis numbers to show the

effects of diffusion on the stability and accuracy of

the inverse solution. The influence of noisy input data on

the solution will also be discussed.

2. Problem definition

The convective mass diffusion problem may be con-

sidered, at first, in the broad context of the arbitrary

surface domain and boundary conditions summarized in

Fig. 1. Let us assume from now on that the unknown

heat source term Q is a function of the solute concen-

tration S. Our goal is to derive the set of equations that

will allow the determination of the source term Q over

the time interval 06 t6 tf , from the temperature data Tm
provided by the sensors. The boundary conditions on

temperature and solute concentration are taken as

known a priori, by specifying either the value of the

function itself or its normal gradient on dX. The initial

temperature and concentration fields are also assumed

to be known quantities when the convective process

begins. The derivation of the inverse problem equations

is better carried out however in terms of dimensionless

equations. An appropriate scaling of length, velocity,

temperature, concentration and time is possible, based

on

L;
a
L
; DT ; DS;

rL2

a
ð1Þ

respectively, where all properties are taken as constants

evaluated at some reference temperature T0. The scales

L, DT and DS may be left arbitrary at this point. The

non-dimensional equations, in conservative form, gov-

erning temperature, stream function and concentration

within the porous medium can then be expressed as

oT
ot
þr � ðuT rT Þ ¼ Q

r2w ¼ Rarn 	 ðT ĝgÞ

e
oS
ot
þr � uS

�
 1

Le
rS
�
¼ 0

ð2Þ

where Ra is the Rayleigh number and Le the Lewis

number. The appropriate boundary conditions are the

usual impermeability requirement on dX, that is, w ¼ 0

and

T ¼ fT or
oT
on
¼ gT

S ¼ fS or
oS
on
¼ gS

ð3Þ

for temperature and concentration, where the right-hand

sides fT, fS and gT, gS may be functions of position and

time. In general, both Dirichlet and Neumann condi-

tions are admissible simultaneously for S and T , on

different parts of the boundary dX.

Solving the inverse problem for the unknown source

term Q is an iterative process, based on a sequence of

approximations Q0;Q1; . . . ;Qk , and so on, based on

some initial guess value Q0, that will minimize the error

EðQÞ ¼ 1

2
kT  Tmk2 �

1

2

Z tf

0

Xn
i¼1
ðT  TmÞ2i dt ð4Þ

In the above, T and Tm stand respectively for the

temperature predicted at the sensors from the source

function approximation and the locally measured tem-

perature. If Q is a function of time only, a single sensor,

i.e. n ¼ 1, is all that is really needed to obtain a valid

solution. If Q is also a function of position of arbitrary

form, however, a surface of sensors is needed in princi-

ple, which would require integration over X in Eq. (4).

But since inverse equations are solved in discretized

form, it is enough to assume a sensor at each compu-

tational point and to remain with the summation over

the n locations in Eq. (4).

The sequence of approximations for the unknown

heat source may be constructed following the steps

of the well-known CG method [10,17], according toFig. 1. Arbitrary solution domain.
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Qkþ1 ¼ Qk þ akpk , where ak is the step size and pk the

conjugate search direction. The search direction is re-

lated to the gradient of E with respect to Q, which can

not be computed in the usual way without some prior

assumptions about the shape of the function. In the

general case, no such representation is available. The

gradient of E and the step size a must be obtained re-

spectively from the solution of the adjoint and sensitivity

problems described below.

2.1. The sensitivity problem

Let us define the temperature sensitivity eTT as the

directional derivative of T at Q in the direction DQ
which is equal to

eTT ¼ lim
e!0

T ðQþ eDQÞ  T ðQÞ
e

ð5Þ

and so on for the other two variables. Based on the

definition of the sensitivity variables, it is straightfor-

ward to derive from Eq. (2) that the temperature, stream

function and concentration sensitivities are solutions of

the set of equations

oeTT
ot
þr � ðueTT þ ~uuT Þ  r2eTT ¼ DQ

r2eww ¼ Rarn 	 ðeTT ĝgÞ
e
oeSS
ot
þr � ðueSS þ ~uuSÞ  1

Le
r2eSS ¼ 0

ð6Þ

It is further shown that the sensitivity variables must

satisfy the homogeneous counterparts of the direct

variables initial and boundary conditions. Thus, the

appropriate condition for the stream function sensi-

tivity is eww ¼ 0, while for the other sensitivity variables,

the requirements are

eTT ¼ 0 or
oeTT
on
¼ 0

eSS ¼ 0 or
oeSS
on
¼ 0

ð7Þ

2.2. The adjoint problem

The directional derivative of E can be used to define

the gradient rE of E with respect to Q from the formal

equality

DDQEðQÞ ¼ hrEjDQi ð8Þ

where the inner product on the right-hand side is to be

understood in a general way. The gradient of E can be

determined as part of the solution of a set of adjoint

equations as follows. Starting from Eq. (4), the direc-

tional derivative of E is

DDQEðQÞ ¼ hT  TmjeTT i � Z tf

0

Xn
i¼1
ðT  TmÞieTTi dt ð9Þ

where all quantities are evaluated at the sensors posi-

tions. It can be noticed that the expression on the right-

hand side of Eq. (9) may be expressed using Dirac�s delta
function as an integral over surface and time. Intro-

ducing the so-called adjoint temperature T , concentra-
tion S, stream function �ww, it is possible to substitute

Eq. (6) into Eq. (9) to get

DDQEðQÞ ¼
Z tf

0

Z
X
ðT  TmÞeTT Xn

i¼1
dðr riÞdAdt

þ
Z tf

0

Z
X

�wwfr2eww  Rarn 	 ðeTT ĝgÞgdAdt
þ
Z tf

0

Z
X
T

oeTT
ot

(
þr � ðueTT þ ~uuT Þ

 r2eTT  DQ

)
dAdt

þ
Z tf

0

Z
X
S e

oeSS
ot

(
þr � ðueSS þ ~uuSÞ

 1

Le
r2eSS)dAdt ð10Þ

By virtue of the Green�s identities, the divergence

theorem, and the impermeability condition on the

boundary dX, it follows from Eq. (10) that

DDQEðQÞ ¼
Z tf

0

Z
X
ðT  TmÞeTT Xn

i¼1
dðr riÞdAdt

þ
Z tf

0

Z
X
fewwr2 �ww Ra �wwrn 	 ðeTT ĝgÞgdAdt

þ
Z tf

0

Z
X

T
oeTT
ot

(
 eTT ðu � rÞT  T ðeuu � rÞT

 eTTr2T  TDQ

)
dAdt

þ
Z tf

0

Z
X

eS
oeSS
ot

(
 eSSðu � rÞS  Sð~uu � rÞS


eSS
Le
r2S

)
dAdt

þ
Z tf

0

I
dX

�ww
oeww
on

 
 eww o �ww

on
þ eTT oT

on
 T

oeTT
on

þ
eSS
Le

oS
on
 S
Le

oeSS
on

!
dldt ð11Þ

Each term in the boundary integral on the right-hand

side of Eq. (11) does vanish on some part of dX, as a

consequence of the boundary conditions imposed upon

the sensitivity variables. If the adjoint variables are re-
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quired to satisfy the same boundary conditions, that is,
�ww ¼ 0 for the adjoint stream function and

T ¼ 0 or
oT
on
¼ 0

S ¼ 0 or
oS
on
¼ 0

ð12Þ

for the adjoint temperature and concentration, respec-

tively, the boundary integral disappears from Eq. (11).

The directional derivative can then be expressed using

continuity as

DDQEðQÞ ¼
Z tf

0

Z
X
ðT  TmÞeTT Xn

i¼1
dðr riÞdAdt

þ
Z tf

0

Z
X
fewwr2 �ww Ra �wwrn 	 ðeTT ĝgÞgdAdt

þ
Z tf

0

Z
X

T
oeTT
ot

(
 eTTr � uT� þrT

�
 T ð~uu � rÞT  TDQ

)
dAdt

þ
Z tf

0

Z
X

eS
oeSS
ot

(
 eSSr � uS

�
þ 1

Le
rS
�

 Sð~uu � rÞS
)
dAdt ð13Þ

after a slight rearrangement of terms. The following

identities hold as a consequence of the stream function

properties

T ð~uu � rÞT ¼ rn 	 ðT ewwrT Þ þ ewwJðT ; T Þ
Sð~uu � rÞS ¼ rn 	 ðSewwrSÞ þ ewwJðS; SÞ

ð14Þ

and can be verified by expanding both sides. It is

straightforward to show also that

�wwrn 	 ðeTT ĝgÞ ¼ rn 	 ð �wweTT ĝgÞ  eTTrn 	 ð �wwĝgÞ ð15Þ

since gravity is a constant vector.

It follows from Eqs. (13)–(15) and the boundary

conditions on the sensitivity and adjoint stream function

that

DDQEðQÞ ¼
Z tf

0

Z
X
ðT  TmÞeTT Xn

i¼1
dðr riÞdAdt

þ
Z tf

0

Z
X

ewwfr2 �ww JðT ;T Þ  JðS;SÞgdAdt

þ
Z tf

0

Z
X

T
oeTT
ot

(
 eTTr � ðuT þrT Þ

þ RaeTTrn	 ð �wwĝgÞ  TDQ

)
dAdt

þ
Z tf

0

Z
X

eS
oeSS
ot

(
 eSSr � uS

�
þ 1

Le
rS
�)

dAdt

ð16Þ

after using Green�s theorem. The next step is to assume

that the adjoint temperature and concentration both

vanish at t ¼ tf , so that Eq. (16) can be simplified further

as

DDQEðQÞ ¼
Z tf

0

Z
X
TDQdAdt

þ
Z tf

0

Z
X

ewwfr2 �ww JðT ; T Þ  JðS; SÞgdAdt

þ
Z tf

0

Z
X

eTT( oT
ot
r � ðuT þrT Þ

þ Rarnð �wwĝgÞ þ ðT  TmÞ
Xn
i¼1

dðr riÞ
)
dAdt


Z tf

0

Z
X

eSS e
oS
ot


þr � uS

�
þ 1

Le
rS
��

dAdt

ð17Þ

by interchanging the order of integration for the time

derivatives and using the initial conditions for the sen-

sitivity variables. All the terms between brackets in Eq.

(17) above vanish if

r2 �ww ¼ JðT ; T Þ þ JðS; SÞ
oT
ot
þr � ðuT þrT Þ ¼ ðT  TmÞ

Xn
i¼1

dðr riÞ

þ Rarn 	 ð �wwĝgÞ

e
oS
ot
þ eSSr � uS

�
þ 1

Le
rS
�
¼ 0

ð18Þ

The set of equations in Eq. (18) defines the adjoint

problem, together with the homogeneous conditions

imposed on the adjoint variables on the boundary dX
and at time t ¼ tf . It should be mentioned at this point

that the change of variable s ¼ tf  t has to be made

first, in order to solve the adjoint equation with the ‘‘end

condition’’ at the physical time t ¼ tf . Via this trans-

formation, the adjoint problem becomes an initial value

problem in s.
Finally, only one term remains on the right-hand side

of Eq. (17)

DDQEðQÞ ¼
Z tf

0

Z
X
TDQdAdt � hT jDQi ð19Þ

The conclusion from Eqs. (8) and (19) is, that the

gradient of the error functional for an arbitrary source

Qðr; tÞ is equal to minus the local adjoint temperature, in

other words, rE ¼ T . This result is valid irrespective

of the actual shape of the solution domain or of the

specific form of the boundary conditions imposed on the

variables. Nevertheless, the computational tests are

performed here in a simple square cavity geometry,

under the boundary conditions summarized in Fig. 2 for
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S and T . The scalings in Eq. (1) are then done with

respect to the width of the cavity. Simple models are

considered from now on for the heat source. At first, a

linear model assuming that Q is equal to the average

solute concentration in the vertical direction

Qðx; tÞ ¼ Savðx; tÞ �
Z 1

0

Sðx; y; tÞdy ð20Þ

Secondly, a non-linear model based on the average

solute concentration in the vertical direction, namely

Qðx; tÞ ¼ erf½100Savðx; tÞ� ð21Þ

where the multiplicative factor 100 was selected by ex-

perimentation so as to ensure significant levels of non-

linearity of the source term Q. For both models, a slight

modification is required to the definition of the gradient

of the error functional, which is then equal to equal to

minus the average over y of the adjoint temperature

rEðx; tÞ ¼ T avðx; tÞ ð22Þ

3. Method of conjugate gradient

The overall CG algorithm may be summarized as

follows [10,17]:

1. Set initial conditions and choose initial guess Q0. Set

iteration counter k ¼ 0.

2. Solve the direct problem with Qk to obtain T k .

3. Evaluate the error T k  Tm at the sensors positions.

4. Solve the adjoint problem backward in time to ob-

tain T
k
.

5. Evaluate the gradient rEk from T
k
according to Eq.

(22).

6. Calculate the search direction pk . If k ¼ 0,

pk ¼ rEk , otherwise, pk ¼ rEk þ ckpk1 with

ck ¼ hrE
k rEk1jrEki
krEk1k2

7. Solve the sensitivity problem with DQ ¼ pk on do-

main X to obtain eTT k at the sensors positions.

8. Calculate the step size

ak ¼ hT
k  TmjeTT ki
keTT kk2

9. Update to Qkþ1 ¼ Qk þ akpk .
10. Set k  k þ 1, go back to step 2, repeat until conver-

gence criterion Ek < eE0 is satisfied.

In the above, the errors E0;E1; . . . ;En are evaluated

from the current estimates T 0; T 1; . . . ; T n of the temper-

ature field computed using the estimates Q0;Q1; . . . and
so on. The discrepancy principle [12] can be used to

select a value for the small number e in the convergence

criterion when the temperature data contain random

errors with uniform distribution. The criterion expres-

sion e ¼ r2 is easily derived using Eq. (4) from the as-

sumption that T n  Tm � rTm where r is the standard

deviation of the measurements, which is taken as a

known constant. Nevertheless, this criterion remains

only a guideline and it is advisable to check the inverse

solution obtained at iteration steps prior to the satis-

faction of the criterion when the data contain noise.

It can also happen that the error levels out at a value

slightly above r2 after a few iterations. In the case of

exact data however, the stopping criterion was set at

e ¼ 2:5	 105 for all the results presented in the next

section.

4. Results and discussion

The direct, sensitivity and adjoint problems described

earlier are solved by finite-differences using the control

volume method and a first-order implicit time scheme.

All the computations are performed for a 41 by 41

uniform mesh, with a time step Dt ¼ Ds ranging from

5	 103 to 1:5	 102 depending on the value of the

Lewis number. A row of sensors, with one sensor at

every computational point along x, is located at y ¼ 0:5
unless mentioned otherwise. The initial conditions used

are always T ¼ S ¼ w ¼ 0 and the simulation time tf
is selected so that a steady-state solution is reached in

every case considered.

Let us recall that the inverse solution for the source

term at tf is always equal to the initial guess value, since

the adjoint temperature field is always equal to zero at

the final time tf . Even though the CG method can be

modified to alleviate this difficulty [12], it is possible to

take advantage of the existence of a steady-state solution

by using only the adjoint temperature at the final s value

Fig. 2. Test computation geometry and coordinate system.
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in the conjugate direction. In this case, the computations

can start from Q0 ¼ 0 as initial guess for the source term.

Alternatively, if one is interested in the transient regime,

the steady-state source distribution can be used as the

initial guess value, once it has been determined. The

discussion will now focus on the effects of Rayleigh and

Lewis numbers, and random errors on the inverse so-

lutions obtained by the present method for the test ge-

ometry sketched in Fig. 2.

4.1. Molecular diffusion regime

When the Rayleigh number Ra is equal to zero, the

direct as well as the inverse problems are linear and su-

perposition of solutions becomes possible. Without loss

of generality, it is enough then to examine the efficiency

of the inverse solution procedure for a concentration

flux made up of a single space Fourier component on

the top boundary of the domain in Fig. 2. For a flux

gSðxÞ ¼ sinðnpxÞ at y ¼ 1 therefore, the steady mass

diffusion equation in Eq. (2) reduces to the Laplace

equation r2S ¼ 0 when Ra ¼ 0. This equation admits

for the boundary conditions summarized in Fig. 2 the

exact solution

Sðx; yÞ ¼ coshðnpyÞ
npsinhðnpÞ sinðnpxÞ ð23Þ

According to our linear test model for the relation-

ship between solute concentration and volumetric heat

generation, the heat source distribution term is in this

case

QðxÞ ¼ sinðnpxÞ
n2p2

ð24Þ

Considering the thermal boundary conditions given in

Fig. 2, the temperature field must be independent of y
and the steady-state solution for T is simply propor-

tional to the source term

T ðxÞ ¼ sinðnpxÞ
n4p4

ð25Þ

Let us first consider the steady inverse solution ob-

tained for a concentration flux gSðxÞ ¼ sinðpxÞ imposed

at y ¼ 1. Since the temperature field is independent of y,
the vertical positioning of the sensors is irrelevant. The

inverse solution is independent of the height of the

sensors in the enclosure in this case and also of the po-

rosity and the Lewis number. The heat source profile

obtained from the direct problem solution with the

concentration flux gS is shown at t ¼ tf in Fig. 3 along

with the analytical solution given by Eq. (24) for n ¼ 1.

The slight discrepancy between the numerical and ana-

lytical solutions is due to the discretization error and can

be reduced by refining the grid. Also shown on Fig. 3 is

the heat source profile predicted from the steady inverse

solution, starting from the estimate Q0 ¼ 0. It is clear

therefore that the inverse solution procedure can predict

with success an unknown heat source of the form

Q ¼ sinðpxÞ. Since the inverse problem is linear when

Ra ¼ 0 and steady, convergence is achieved after a single

iteration, as expected under these circumstances.

The effect of noisy input data on the inverse solution

is examined next. The transient inverse solution for

Ra ¼ 0 obtained for a noise of relative standard devia-

tion r ¼ 0:04 is shown in Fig. 4. The evolution of the

error, normalized by E0, with the number of iterations is

also plotted. The reasonably accurate solution obtained

after 3 iterations, starting from the steady solution of the

direct problem as initial guess for Q0, appears far more

satisfactory than the solution obtained after 11 itera-

tions. The difference between the solutions is a clear

indication of the iterative regularization effect of the CG

Fig. 3. Predicted heat source profiles at tf , gSðxÞ ¼ sinðpxÞ,
Ra ¼ 0.

Fig. 4. Heat source prediction versus time at x ¼ 0:5, noisy

data, gSðxÞ ¼ sinðpxÞ, Le ¼ 1, Ra ¼ 0, r ¼ 0:04.
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method. This phenomenon can be used with profit to

optimise the final result. It has been observed on many

occasions, as by Prud�homme and Nguyen [18] in inverse

conduction for instance, that the multiple frequency

components of an inverse solution are not reproduced at

the same rate by the algorithm, but rather successively

from the lower to the higher frequencies. This sequential

convergence is at the origin of the regularisation effect.

Optimisation of the solution is therefore feasible by

merely stopping the iterations before the high frequency

solution components, essentially due to the noise, are

recovered.

Fig. 5 shows the transient direct and inverse solutions

for different values of the product eLe, which controls

the time needed for the solutions to reach the common

steady-state value. Convergence is achieved in 8 itera-

tions for eLe ¼ 0:5 and 1 and only 6 iterations for

eLe ¼ 2. Nevertheless, the overall level of agreement

between the direct and inverse solutions is quite good in

all the cases considered.

4.2. Convection regime

By setting the Rayleigh number Ra equal to 105, the

influence of convective flow within the cavity becomes

significant, as can be seen in Fig. 6, which shows the

direct solution isotherms, streamlines and isoconcen-

tration lines obtained at t ¼ tf for gS ¼ sinðpxÞ and

Le ¼ 1. It is obvious from the isotherm pattern that

there is a definite temperature stratification over most of

the cavity at this Rayleigh number. Consequently, the

sensors position along y is expected to matter in this case

in the accuracy of the inverse solution. The streamlines

shown on Fig. 6 correspond to a pair of counter-rotating

convection cells which are also found for other Rayleigh

and Lewis numbers but with different intensities. There

is also a significant stratification of concentration near

the top of the cavity, indicating that a concentration

boundary layer is forming along the wall.

Fig. 7 describes the influence of the Lewis number on

the distribution of the solute concentration within the

cavity. It is seen from Figs. 6 and 7 that, even at a fairly

high Ra value, the Lewis number strongly affects both

the magnitude and spatial distribution of the solute

concentration S. As Le increases, the level of solute

concentration becomes weaker over the bulk of the

cavity. Consequently, the heat source Q also becomes

weaker for the present model. The distribution of S also

evolves from a rather smooth stratification for Le ¼ 0:1
to a definite boundary layer for Le ¼ 10. On the other

hand, the shape of the isotherms and streamlines is not

affected much by the Lewis number.

Satisfactory inverse solutions can be obtained at

Ra ¼ 105 as shown in Fig. 8. The steady heat source

profiles are displayed versus x for different values of Le.
It is noticed that the source becomes weaker as Le in-

creases, as expected, because the solute concentration

becomes weaker too. More iterations are required to

achieve convergence and the source profile is also not

Fig. 5. Heat source prediction versus time at x ¼ 0:5. Influence

of eLe, gSðxÞ ¼ sinðpxÞ, Ra ¼ 0.

Fig. 6. Steady isocontours, gSðxÞ ¼ sinðpxÞ, Le ¼ 1, Ra ¼ 105.
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predicted as accurately by the inverse solution near the

vertical walls of the cavity.

The influence of the sensors position is examined in

Fig. 9 for Le ¼ 1. It is found that convergence is faster

for sensors placed at y ¼ 0:75 than for sensors placed at

y ¼ 0:50 or 0.25. But there is otherwise no clear ad-

vantage for the accuracy of the solution with the present

source model in using one position of the sensors or the

other, unlike what is found in the case of an inverse

solution for an unknown flux or temperature. For this

kind of inverse problem, the most accurate solutions are

obtained by moving the sensors closer to the active

boundary. In the present case, the solutions obtained

from sensors placed at y ¼ 0:25 and 0.50 are nearly

identical and not qualitatively better or worse than the

solution for sensors at y ¼ 0:75.
The influence of random noise in the input data can

be examined in the convective regime also. Fig. 10 shows

the predictions for the evolution with time of the heat

source at the middle of the cavity at x ¼ 0:5 from noisy

input data after 3 and 7 iterations respectively. Com-

parison of the inverse prediction with the direct solution

reveals that the iterative regularisation property of the

conjugate method may still be used when convection is

present to optimize the inverse solution.

A test case where the concentration gradient gSðxÞ
imposed at y ¼ 1 involves many space Fourier compo-

nent can be considered. We thus try to recover the

heat source resulting from a triangular concentration

gradient profile on the top boundary gSðxÞ ¼ 2x for

0 < x < 1=2 and gSðxÞ ¼ 2 2x for 1=2 < x < 1. Com-

putations are carried out at Ra ¼ 105 for a Lewis num-

ber Le ¼ 1. The evolution in time of the source profile of

the direct problem solution depicted in Fig. 11 appears

very similar to the inverse solution represented in Fig.

12.

Fig. 8. Predicted heat source profiles at tf for various Lewis

numbers, gSðxÞ ¼ sinðpxÞ, Ra ¼ 105.
Fig. 9. Predicted heat source profiles at tf . Influence of sensor

position, gSðxÞ ¼ sinðpxÞ, Le ¼ 1, Ra ¼ 105.

Fig. 7. Concentration at tf for Le ¼ 0:1 and 10, gSðxÞ ¼ sinðpxÞ, Ra ¼ 105.
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For the non-linear source model of Eq. (21), a test

was made with the sensors placed at y ¼ 0:5, for

gS ¼ sinðpxÞ and Le ¼ 1. The Rayleigh number was also

set equal to Ra ¼ 105 just as for the linear model. It

turns out that the values of Q are then larger, but the

accuracy of the inverse solution remains qualitatively

comparable, at least for this particular model. Fig. 13

shows the steady heat source profiles as a function of x.
The inverse solution does not reproduce the rapid,

boundary layer-type, variation of the direct solution

near the walls, but the overall level of agreement is

otherwise satisfactory for an inverse solution when

natural convection is involved.

5. Conclusion

A general formulation in two dimensions of the in-

verse natural convection problem with mass diffusion for

an unknown heat source has been presented for the it-

erative method with adjoint equations and tested for

simple source models. Without any a priori information,

the method is able to predict over a significant range of

Rayleigh numbers an arbitrary volumetric source Qðx; tÞ
which is a function of the solute concentration from

temperatures measured by sensors located within the

porous matrix. Stable solutions may be obtained from

noisy data by stopping the iteration process before the

Fig. 11. Heat source Q. Direct solution for triangular concen-

tration flux, Le ¼ 1, Ra ¼ 105.

Fig. 12. Heat source Q. Inverse solution, triangular concen-

tration flux, Le ¼ 1, Ra ¼ 105.

Fig. 13. Predicted heat source profiles at tf . Non-linear source,

gSðxÞ ¼ sinðpxÞ, Le ¼ 1, Ra ¼ 105.

Fig. 10. Heat source prediction versus time at x ¼ 0:5, noisy

data, gSðxÞ ¼ sinðpxÞ, Le ¼ 1, Ra ¼ 105, r ¼ 0:04.
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high frequency components of the random noises start

to significantly impair the inverse solution.
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